新东方网>长春新东方学校>国外考试>长春新东方GMAT>正文
GMAT数学怎么求余数
2019-06-27 09:26
来源:新东方在线
作者:
mod:模。意思就是求余数。
比如说:5 mod 3=2, 100 mod 11=1
读作:五模三余二,一百模十一余一
这是标准的公式化写法,大家可能不太熟悉,但是知道意思了,其实也很简单。引入Mod,主要是可以用数学公式来写,而且可以把求余数的问题化简成为普通的四则运算的问题,也比较容易表达。
在讲如何求余之前,先来普及一下余数的一些性质。
首先就是余数的加减法:比如说100除以7余2,36除以7余1。那么100+36除以7余几呢?或者100-36除以7余几呢?很显然,只要用100除以7的余数2与36除以7的余数1进行加减就可以得到答案。通过这个例子可以很明显的看出来,余数之间是可以加减的。
总结写成书面的公式的话,就是:(M+N) mod q=((M mod q)+(N mod q)) mod q
然后我们再看余数的乘法:我们继续来看上面这个例子,如果要求100*36除以7的余数是多少,该怎么求呢?
我们不妨来这样做:
100=98+2=7*14+2,36=35+1=7*5+1;
这时100*36=(7*14+2)(7*5+1)=7*14*7*5 + 2*7*5 + 7*14*1 + 2*1
很明显,100*36除以7的余数就等于2*1=2
于是我们可以得出这样的一个结论:求M*N除以q的余数,就等于M除以q的余数 乘以 N除以q的余数。
类似的,如果是求N^m 除以q的余数呢?只要我们将N^m=N*N*N*...*N,也就是说分别地用每个N除以q的余数相乘,一共m个,得出的结果再对q求余数,即可求出结果。
举例来说:求11^4除以9的余数。化成公式即是:11^4 mod 9=?
11^4 mod 9 = (9+2)^4 mod 9 = 2^4 mod 9 =16 mod 9 = 7
于是我们可以总结出这样的公式:
M*N mod q=(M mod q)*(N mod q) mod q
( M^n mod q = (M mod q)^n mod q )
那么,我们知道了这些性质之后对解题又有什么帮助呢?
As we all know,如果一个数乘以1,还是等于原数;而1的任意次方,还是等于1。
所以在解答这一类的问题的时候,只要我们尽量把计算中的余数凑成与1相关的乘式,结果显然会好算很多的。(或者-1,2之类的比较容易进行计算的数字都可以,因题而异。)
举例说明:求3^11除以8的余数。题目即是:3^11 mod 8=?
3^11 mod 8
=3^10 * 3^1 (mod 8)
=(3^2)^5*(3^1) (mod 8)
=9^5 * 3 (mod 8)
=(8+1)^5 *3 (mod 8)
=1^5 *3 (mod 8)
=3
发现没有,甚至没有去计算什么尾数的规律,答案就算出来了,而且只用了加减乘除。
那么再来看一道题目:求 (2^100)*(3^200) 除以7的余数
先化成计算公式:
(2^100)*(3^200) mod 7
=[2^(3*33 + 1)] * [3^(3*66 + 2)] mod 7
=[(2^3)^33 * 2] * [(3^3)^66 * 3^2] mod 7
=(8^33 * 2) * (27^66 * 9) mod 7
=[(7+1)^33 * 2] * [(28-1)^66 * 9] mod 7
=(1^33 * 2)* [(-1)^66 * 9] mod 7
=2*9 mod 7
=4
注意:如果余数有负号,就当做负数一样计算。
以上就是本文的全部内容,更多精彩请随时关注新东方长春学校官网。
相关推荐
学英语,要留学,请添加左侧 小新学妹 微信好友咨询
你的问题都将不是问题! 咨询电话:0431-81128808
版权及免责声明
①凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。
② 本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。
③ 如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。