2021考研数学:导数的这八个应用你要牢记!
2020-02-24 16:03
来源:新东方在线
作者:
导数的应用
导数的应用主要有以下几种:(1)切线和法线(2)单调性(3)极值(4)凹凸性(5)拐点(6)渐近线(7)(曲率)(只有数一和数二的考)(8)经济应用(只有数三的考)。我们一一说明每个应用在考研中有哪些注意的。
1、切线和法线
主要是依据导数的几何意义,得出曲线在一点处的切线方程和法线方程。
2、单调性
在考研中单调性主要以四种题型考查,第一:求已知函数的单调区间第二:证明某函数在给定区间单调第三:不等式证明第四:方程根的讨论。这些题型都离不开导数的计算,只要按照步骤计算即可。做题过程中要仔细分析每种的处理方法,多加练习。
3、极值
需要掌握极值的定义、要条件和充分条件即可。
4、凹凸性和拐点
考查的内容也是其定义、要条件、充分条件和判别法。对于这块内容所涉及到的定义定理比较多,使很多同学弄糊涂了,所以希望同学们可以列表对比学习记忆。
5、渐近线
当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:垂直渐近线、水平渐近线、斜渐近线。
考研中会考察给一曲线计算渐近线条数,计算顺序为垂直渐近线、水平渐近线、斜渐近线。
6、条数计算
垂直渐近线就直接算就可以了,有几条算几条,而水平渐近线和斜渐近线要分别x趋于正无穷计算一次,和x趋于负无穷计算一次,当趋于正无穷和负无穷的水平渐近线或者斜渐近线相同则计为一条渐近线,若是不同,则计为两条渐近线。另外,在趋于正无穷或者负无穷时,有水平渐近线就不会有斜渐近线。
7、曲率
这块属于导数的物理应用,这块是数一数二的同学考的,需要掌握曲率、曲率半径、曲率圆。理解并记清楚公式。
8、导数的经济应用
导数的经济学应用是数三特考的,这个主要是考察弹性,边际利润,边际收益等。记住公式会计算即可。
以上就是本文的全部内容,更多精彩内容,请关注新东方长春学校官方网站。
相关推荐
以上就是本文的全部内容,更多精彩内容,请持续关注长春新东方网。
新东方长春学校官方微信:新东方长春学校 (微信号:ccxdfcn)
最新考试资讯、考试政策解读、真题解析,请扫一扫二维码,关注我们的官方微信!
相关推荐
版权及免责声明
①凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。
② 本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。
③ 如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。