新东方老师好

新东方网>长春新东方学校>国内考试>考研考试>正文

2016考研数学一大纲原文-长春新东方

2015-09-20 23:42

来源:新东方

作者:新东方

 五、多元函数微分学
  1.理解多元函数的概念,理解二元函数的几何意义.
  2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
  3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
  4.理解方向导数与梯度的概念,并掌握其计算方法.
  5.掌握多元复合函数一阶、二阶偏导数的求法.
  6.了解隐函数存在定理,会求多元隐函数的偏导数.
  7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
  8.了解二元函数的二阶泰勒公式.
  9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.
  六、多元函数积分学
  1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.
  2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
  3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
  4.掌握计算两类曲线积分的方法.
  5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.
  6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
  7.了解散度与旋度的概念,并会计算.
  8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).
  七、无穷级数
  1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
  2.掌握几何级数与 级数的收敛与发散的条件.
  3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
  4.掌握交错级数的莱布尼茨判别法.
  5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.
  6.了解函数项级数的收敛域及和函数的概念.
  7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
  8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
  9.了解函数展开为泰勒级数的充分必要条件.
  10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
  11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.
  八、常微分方程
  1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
  2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
  3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.
  4.会用降阶法解下列形式的微分方程: 和 .
  5.理解线性微分方程解的性质及解的结构.
  6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
  7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
  8.会解欧拉方程.
  9.会用微分方程解决一些简单的应用问题.
  通过与2015年的数学一大纲比较,今年没有做任何调整,同学们按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016的考试中创造辉煌。最后祝同学们,金榜题名。


相关推荐

长春新东方考研资讯

长春新东方无忧考研

长春新东方考研课程

  以上就是本文的全部内容,更多精彩内容,请持续关注长春新东方网

新东方长春学校官方微信:新东方长春学校 (微信号:ccxdfcn

最新考试资讯、考试政策解读、真题解析,请扫一扫二维码,关注我们的官方微信!

免费申请学习规划

已为25937位学员提供学习规划

*验证码

*短信验证码

相关推荐

  • 中学辅导
  • 大学辅导
  • 出国辅导
  • 热门活动

版权及免责声明

凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。

本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。

如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。